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Abstract: Wood–plastic composites (WPCs) have emerged as a sustainable and cost-
effective material for construction, particularly in low-cost housing solutions. However, 
designing WPC panels that meet structural, serviceability, and manufacturing constraints 
remains a challenge. This study focused on optimizing the cross-sectional shape of WPC 
roof panels using evolutionary algorithms to minimize material usage while ensuring 
compliance with deflection and stress constraints. Two evolutionary algorithms—the ge-
netic algorithm (GA) and particle swarm optimization (PSO)—were employed to optimize 
sinusoidal and trapezoidal panel profiles. The optimization framework integrated finite 
element analysis (FEA) to evaluate structural performance under uniformly distributed 
loads and self-weight. The modulus of elasticity of the WPC material was determined 
experimentally through three-point bending tests, ensuring accurate material representa-
tion in the simulations. The trapezoidal profile proved to be the most optimal, exhibiting 
superior deflection performance compared with the sinusoidal profile. A comparative 
analysis of GA and PSO revealed that PSO outperformed GA in both solution optimality 
and convergence speed, demonstrating its superior efficiency in navigating the design 
space and identifying high-performance solutions. The findings highlight the potential of 
WPCs in low-cost housing applications and offer insights into the selection of optimization 
algorithms for similar engineering design problems.

Keywords: evolutionary algorithms; low-cost housing; structural optimization; wood–
plastic composites

1. Introduction
Wood–plastic composites (WPCs) have emerged as a promising sustainable material,

combining recycled wood fibers and thermoplastic polymers to create environmentally
friendly and cost-effective alternatives to traditional construction materials [1]. With
growing global emphasis on reducing carbon footprints and promoting circular economies,
WPCs are increasingly recognized for their potential in structural applications [2]. Their
advantages—including resistance to moisture [3], weathering [4,5], and pests [6,7], coupled
with low maintenance requirements—make them ideal for load-bearing structures such as
roofing panels, where durability and affordability are critical.

To understand and maximize their behavior for structural uses, the mechanical per-
formance of wood–plastic composites (WPCs) has been thoroughly investigated [8,9]. Key
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mechanical properties—such as the modulus of elasticity, ultimate strength, and fracture
toughness—have been shown in experimental studies using tensile, flexural, and impact
testing to be greatly influenced by factors including fiber orientation, interfacial bonding
quality, and processing conditions during manufacture [10–13]. Under constant load, the
viscoelastic character of the polymer matrix, together with the hygroscopic behavior of the
wood fibers, causes time-dependent deformation events, including creep and fatigue [14–17].
The long-term structural performance of WPCs depends critically on these effects. Together,
these material properties determine not only how much weight a WPC-based part can hold
at first, but also how long it will last and how well it can be used in different environments.
Apart from experimental studies, sophisticated numerical techniques—such as finite element
analysis (FEA)—have been applied to replicate stress distribution and deformation mecha-
nisms under challenging loading conditions [18,19]. These simulations make WPCs’ design
and dependability in structural uses better by giving detailed information on how to improve
performance and predict failure. The integration of experimental and computational studies
has deepened the knowledge of WPCs’ behavior, thus enabling their acceptance in many
structural systems. Where the twin concerns of sustainability and cost efficiency are especially
important, applications include roofing panels [20], shear walls [21,22], and columns [23,24].
A recent study by Darwish et al. (2025) [25] found that using WPCs for the roof with concrete
masonry block walls reduced costs to 7731 EGP/m2, compared with 8017 EGP/m2 for a
conventional reinforced concrete skeleton. The highest cost, 11,574 EGP/m2, occurred when
WPCs were used for both walls and roof.

Structural optimization problems can be broadly categorized into size, shape, and
topology optimization [26], each focusing on distinct aspects of a design. Size optimization
involves adjusting critical dimensions—such as cross-sectional areas—to ensure that the
components meet the strength and deflection requirements, whereas shape optimization
refines the external contours to enhance stress distribution and overall performance [27].
Topology optimization, on the other hand, seeks the optimal material distribution within a
prescribed design space, often yielding innovative and non-intuitive configurations that
maximize efficiency under complex loading scenarios [28]. To solve these problems, two
principal classes of methods are employed: mathematical optimization techniques and
metaheuristic optimization techniques [29,30]. Mathematical optimization methods, which
include gradient-based algorithms, linear and non-linear programming, and sequential
quadratic programming, are capable of rigorously identifying optimal solutions when the
objective functions and constraints are smooth and differentiable. However, many struc-
tural optimization problems involve non-convex search spaces, discrete design variables,
or non-smooth, non-differentiable functions, which limit the effectiveness of these classical
methods. In these challenging cases, metaheuristic techniques such as genetic algorithms
and particle swarm optimization become valuable tools [31–35]. Although they do not
guarantee a global optimum, they efficiently explore complex, multimodal design spaces
and are well-suited to finding high-quality near-optimal solutions where classical methods
struggle. Constraints in these optimization frameworks typically encompass mechanical
performance limits like stress and deflection thresholds, buckling resistance, fatigue life, as
well as manufacturing and cost considerations, ensuring that the optimized designs are
both efficient and practical [36–40].

Despite the increasing adoption of wood–plastic composites (WPCs) in sustainable
construction, the application of optimization techniques for enhancing their load-bearing
performance remains relatively underexplored. While some research has addressed the
optimization of WPCs’ mechanical properties [41–45], only a limited number of studies have
systematically employed structural optimization methods to refine the geometric design
parameters for load-bearing applications. Zhang et al. [46] investigated the structural
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design of wood–plastic composite floors by analyzing geometric parameters such as size,
shape, and cavity patterns, and found that selecting a design with the largest total cavity
area via a method of exhaustive search can optimize strength while saving up to 22% of
the material compared with a solid cross-section. Similarly, Shanmugasundaram et al. [47]
conducted a parametric study using numerical experiments in LS-DYNA to optimize the
cross-sectional area and span of WPC decking structures, achieving a hollow elliptical
channel design that reduced the weight by 45% compared with a solid cross-section while
meeting the allowable deflection and stress criteria for outdoor applications. Soury et al. [48]
developed a multi-objective micro-genetic algorithm integrated with FEA to determine a
profile that minimizes mass and deflection while maximizing load capacity, resulting in a
pallet weighing less than 20 kg with bending and distributed loading strengths exceeding
500 kg and 2000 kg, respectively. Despite these promising advancements in optimizing WPC
components for various load-bearing applications, to the best of the authors’ knowledge, no
study has yet considered the structural optimization of wood–plastic composite roof panels’
cross-sectional profiles for low-cost housing while concurrently addressing manufacturing
and serviceability constraints.

To address these gaps, this study utilized the genetic algorithm (GA) and particle
swarm optimization (PSO) to optimize the cross-sectional profiles of wood–plastic com-
posite (WPC) roof panels for low-cost housing applications. The optimization framework
incorporates deflection constraints with key manufacturing parameters—such as wall thick-
ness and extrusion die dimensions—to ensure that the designs are both structurally robust
and production-feasible. Finite element analysis (FEA) was utilized to accurately calculate
the deflections and stress distributions under realistic loading conditions. The flexural
properties of the extruded WPC panels, determined through three-point bending tests, are
were as key material inputs in the finite element analysis, ensuring accurate simulation of
the panel behavior under load. Three distinct profile geometries—sinusoidal, trapezoidal,
and triangular—were investigated, with decision variables defining their respective shape
parameters. The key findings demonstrate the superiority of trapezoidal profiles in balanc-
ing stiffness and material efficiency, while a comparative analysis of GA and PSO reveals
trade-offs between computational speed and solution robustness.

2. Materials and Experimental Methods
2.1. Material Preparation and Manufacturing Process

The wood–plastic composite (WPC) was formulated with 60 wt.% high-density
polyethylene (HDPE) and 40 wt.% sawdust. The raw materials were meticulously com-
bined and processed using a co-rotating twin-screw extruder with a length-to-diameter
(L/D) ratio of 40:1 to ensure homogeneous mixing and uniform dispersion of the polymer
and lignocellulosic components. A controlled temperature range of 165 ◦C to 185 ◦C was
used throughout the barrel zones of the extrusion process to improve the melting proper-
ties of HDPE and slow down the thermal breakdown of the sawdust. A screw speed of
50 rpm was sustained to guarantee uniform material flow and sufficient shear mixing. The
extruded profiles were cooled in room air to keep their shape after they came out of the
die. They were then cut to standard specimen sizes according to the applicable mechanical
testing protocols so that they could be studied further.

2.2. Three-Point Bending Test

Mechanical testing was performed in compliance with ASTM D1037 [49] without
any deviations utilizing a universal testing machine (Model 810) manufactured by MTS
Systems Corporation located in 14000 Technology Drive Eden Prairie, MN 55344. The load
head was operated at a constant crosshead velocity of 6 mm/min to guarantee consistent



Polymers 2025, 17, 795 4 of 16

application of the bending force. Specimens were constructed to the standard dimensions
outlined by ASTM D1037, and the experimental arrangement is illustrated in Figure 1.
During the examination, real-time load and deflection metrics were documented for future
analysis. We calculated the modulus of elasticity (E) in bending using classical beam theory,
as shown by the following equation

δ =
PL3

48EI
(1)

where δ is the maximum midspan deflection, P is the maximum applied load, L is the span,
and I is the second moment of area about the neutral axis.

Polymers 2025, 17, x FOR PEER REVIEW 4 of 17 
 

 

Systems Corporation located in 14000 Technology Drive Eden Prairie, MN 55344. The load 
head was operated at a constant crosshead velocity of 6 mm/min to guarantee consistent 
application of the bending force. Specimens were constructed to the standard dimensions 
outlined by ASTM D1037, and the experimental arrangement is illustrated in Figure 1. 
During the examination, real-time load and deflection metrics were documented for fu-
ture analysis. We calculated the modulus of elasticity (E) in bending using classical beam 
theory, as shown by the following equation 𝛿 =  𝑃𝐿ଷ48𝐸𝐼 (1)

where 𝛿 is the maximum midspan deflection, 𝑃 is the maximum applied load, 𝐿 is the 
span, and 𝐼 is the second moment of area about the neutral axis. 

 

Figure 1. Three-point bending test specimens’ dimensions and experimental setup. 

3. Optimization Algorithms and Problem Formulation 
The optimization of the wood–plastic composite (WPC) roof panel was carried out 

using two population-based metaheuristic algorithms: the genetic algorithm (GA) and 
particle swarm optimization (PSO). Both algorithms were implemented using the Pymoo 
library [50], a Python-based framework for multi-objective optimization. The theoretical 
foundations, parameter settings, and mathematical formulations of these algorithms are 
described below. 

3.1. Genetic Algorithm (GA) 

The genetic algorithm (GA) is inspired by the principles of natural selection and evo-
lution [51]. It operates on a population of candidate solutions, each represented as a set of 
design variables. The algorithm iteratively evolves the population over successive gener-
ations using three primary operators: selection, crossover, and mutation. During the se-
lection phase, individuals with higher fitness values (i.e., those that better satisfy the ob-
jective and constraints) are more likely to be chosen as parents for the next generation. 
The crossover operator, typically with a probability ranging from 0.7 to 1.0, combines the 
design variables of two parents to create offspring, introducing diversity into the popula-
tion. The mutation operator, usually applied with a probability between 0.01 and 0.2, in-
troduces random changes to the design variables, allowing the algorithm to explore new 
regions of the design space and preventing premature convergence [52]. The fitness of 
each individual is evaluated on the basis of the objective function and the degree to which 
it satisfies the constraints. The parameters used for the GA include a population size of 
100, a crossover probability of 0.9, and a mutation probability of 0.1. These parameters 
ensure a balance between exploration (searching new regions of the design space) and 
exploitation (refining existing solutions) [53]. 

  

84 mm 

6 mm 

15 mm

21 mm

4 mm 

Figure 1. Three-point bending test specimens’ dimensions and experimental setup.

3. Optimization Algorithms and Problem Formulation
The optimization of the wood–plastic composite (WPC) roof panel was carried out

using two population-based metaheuristic algorithms: the genetic algorithm (GA) and
particle swarm optimization (PSO). Both algorithms were implemented using the Pymoo
library [50], a Python-based framework for multi-objective optimization. The theoretical
foundations, parameter settings, and mathematical formulations of these algorithms are
described below.

3.1. Genetic Algorithm (GA)

The genetic algorithm (GA) is inspired by the principles of natural selection and
evolution [51]. It operates on a population of candidate solutions, each represented as a
set of design variables. The algorithm iteratively evolves the population over successive
generations using three primary operators: selection, crossover, and mutation. During the
selection phase, individuals with higher fitness values (i.e., those that better satisfy the
objective and constraints) are more likely to be chosen as parents for the next generation.
The crossover operator, typically with a probability ranging from 0.7 to 1.0, combines
the design variables of two parents to create offspring, introducing diversity into the
population. The mutation operator, usually applied with a probability between 0.01 and
0.2, introduces random changes to the design variables, allowing the algorithm to explore
new regions of the design space and preventing premature convergence [52]. The fitness of
each individual is evaluated on the basis of the objective function and the degree to which
it satisfies the constraints. The parameters used for the GA include a population size of 100,
a crossover probability of 0.9, and a mutation probability of 0.1. These parameters ensure a
balance between exploration (searching new regions of the design space) and exploitation
(refining existing solutions) [53].

3.2. Particle Swarm Optimization (PSO)

The particle swarm optimization (PSO) algorithm is inspired by the social behavior
of birds flocking or fish schooling [54]. It operates on a population of particles, each
representing a candidate solution in the design space. Each particle has a position xi and a
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velocity vi, which are updated iteratively based on the particle’s own experience and the
experience of the swarm. The position update is governed by the following equations

vt+1
i = w·vt

i + c1·r1·
(

pi − xt
i
)
+ c2·r2·

(
g − xt

i
)

(2)

xt+1
i = xt

i + vt+1
i (3)

where w is the inertia weight, c1 and c2 are the cognitive and social acceleration coefficients,
r1 and r2 are random numbers between 0 and 1, pi is the best position found by the particle,
and g is the best position found by the swarm. The parameters used for PSO include a
population size of 100, and acceleration coefficients c1 and c2 of 2, as originally used by
Kennedy and Eberhart [35] in their initial implementation of the algorithm. Eberhart [55]
later identified the optimal range for the inertia weight to be between 0.9 and 1.2, with
the value chosen in this paper set to 0.9. These parameters ensure that the algorithm
effectively balances exploration and exploitation, allowing it to converge toward an optimal
or near-optimal solution [33].

3.3. Design Problem Formulation

In this study, a predefined set of cross-sectional shapes—including sinusoidal, trape-
zoidal, and triangular profiles—was explored to identify the optimal design for WPC roof
panels. Each profile was parameterized by discrete design variables that control its geo-
metric features. The optimization problem was formulated as a constrained minimization
problem, where the general problem formulation can be stated as follows

Minimize : fArea(X, t) (4)

Subject to :


δ(X, t) ≤ δmax

tmin ≤ t ≤ tmax

Xmin ≤ X ≤ Xmax

(5)

where the design variables are the set of geometric parameters X = {x1, x2, . . . , xn} and a
thickness variable t, which collectively describe the cross-sectional shape and dimensions
of the panel. The geometric parameters X represent the shape parameters of the predefined
profiles, while the thickness variable t determines the uniform thickness of the panel
walls. The objective of the optimization is to minimize the cross-sectional area, which is
directly proportional to the material usage and weight of the panel. The panel must meet a
deflection constrain where δ(X, t) is the maximum midspan deflection under the applied
loads, and δmax is the allowable deflection limit. Additionally, the geometric parameters X
must lie within specified bounds Xmin ≤ X ≤ Xmax, which are determined by the extrusion
die’s dimensions and the need to maintain a feasible and manufacturable shape. Similarly,
the thickness t must satisfy tmin ≤ t ≤ tmax where the minimum thickness is constrained
by the extrudability of the WPC material, and the maximum thickness is limited to avoid
excessive material usage.

3.3.1. Sinusoidal Wave Panel

The sine wave panel is characterized by a cross-sectional shape defined by a sinusoidal
function, which provides a smooth and continuous profile. The shape is generated using
the following mathematical formulation

y(x) = A·sin
(

2πx
P

)
(6)



Polymers 2025, 17, 795 6 of 16

where y(x) describes the vertical displacement of the sine wave at a horizontal position
x, A is the amplitude of the sine wave, and P is the period of the wave. The amplitude A
determines the maximum height of the wave from its midline, while the period P controls
the horizontal distance between successive peaks of the wave. These two parameters serve
as the primary design variables for the sine wave panel. The sine wave shape is particularly
advantageous due to its inherent stiffness and ability to distribute stresses evenly, making
it a strong candidate for the WPC roof panels. The relationship between the amplitude and
period is illustrated in Figure 2a, which shows the geometric configuration of the sine wave
panel and highlights the key variables A and P. The smooth curvature of the sine wave
also facilitates the extrusion process, as it avoids sharp corners or discontinuities that could
complicate manufacturing.
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3.3.2. Triangular and Trapezoidal Panels

The triangular and trapezoidal panels were generated using a modified sawtooth
function, which allowed for the creation of both shapes by adjusting the parameters of
the function. For a given longitudinal position x, the height y(x) of the initial profile is
determined by the sawtooth function modulated by the geometric parameters. The base
mathematical formulation for generating the profile is given by

y(x) =
tan φ·P·S

( 2πx
P

)
4

(7)

where the sawtooth function S(θ) with 50% duty cycle is defined as:

S(θ) =

{
2θ
π f or − π ≤ θ < 0
2 − 2θ

π f or 0 ≤ θ < π
(8)

where φ is the angle of the triangular peaks, and P is the period of the sawtooth function.
The sawtooth function generates a triangular wave by default, with sharp peaks and
troughs determined by the angle φ and the period P. The trapezoidal shape is derived
from the triangular wave by introducing an additional parameter, the amplitude A, which
limits the maximum and minimum heights of the wave. The key design variables for these
shapes are the angle φ the period P, and the amplitude A, which control the steepness,
spacing, and height of the peaks, respectively. The triangular panel is characterized by
sharp, linear slopes, while the trapezoidal panel features flat sections at the peaks and
troughs, providing additional stiffness and stress distribution. Both shapes are illustrated in
Figure 2b,c, which highlights the geometric parameters and the transition from a triangular
to a trapezoidal profile.

The design parameters were subject to specific limits to ensure both manufactura-
bility and performance. The maximum allowable deflection was set to span/360 to
meet serviceability requirements, in accordance with the Egyptian Code of Practice (ECP
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203:2020) for an immediate deflection limit due to live loads [56]. Additionally, the pan-
els were assembled from smaller parts, extruded through a die with fixed dimensions of
300 × 200 mm, and the shape parameters of the profiles are inherently constrained by these
extrusion dimensions. A minimum wall thickness of 6 mm was also imposed to ensure the
extrudability of the WPC material, as thinner walls may lead to manufacturing defects such
as warping or incomplete filling of the die. Table 1 below presents the upper and lower
bounds on the decision variables governing the profile geometries.

Table 1. Decision variables’ upper and lower bounds.

Parameter Lower Bound Upper Bound

A 20 mm 300 mm

P 50 mm 200 mm

φ 20 85

t 6 50

3.4. Finite Element Analysis (FEA) of the Panels

The structural performance of the generated panels was evaluated using Finite El-
ement Analysis (FEA), which provides a detailed assessment of the stress distribution
and deflection under applied loads. The modeling and analysis were conducted using
FreeCAD version 1.0 [57] as the pre- and post-processing software, with CalculiX version
2.22 [58] serving as the finite element solver. The panels were modeled as simply supported
one-way shells, utilizing S8 second-order 8-node shell elements for discretization. These
elements were chosen for their ability to accurately capture bending and membrane be-
havior, which are critical for the analysis of thin-walled structures. The simply supported
boundary conditions were modeled by applying a pinned support to the troughs of the
wave on one side and a roller support on the other side, ensuring that the panel was free to
rotate but restrained from vertical displacement at the supports. A uniformly distributed
load of 0.6 kN/m2, representing the live load, as per the Egyptian Code of Practice (ECP
201:2012) [59] requirements, was applied to the surface of the panel in the gravity direction.
Additionally, the self-weight of the panel was included in the analysis to account for the
gravitational effects of the WPC material. These loading and boundary conditions are
illustrated in Figure 3, which provides a visual representation of the setup, including the
applied load and support configurations.
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The material properties utilized in the finite element analysis (FEA) were obtained
from the three-point bending test performed on the WPC material. The material was
characterized as an isotropic, linear elastic substance to streamline the analysis while
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ensuring adequate precision for the design optimization procedure. The modeling and
analysis workflow was automated using Python version 3.13.2 scripting via the FreeCAD
API to improve computational efficiency. This automation enabled the swift creation of
finite element models, the application of loads and boundary conditions, and the extraction
of essential results, such as maximum deflection and stress. A linear static analysis was
conducted to assess the structural response of the panels, focusing on the maximum
midspan deflection and stress levels. The researchers used the FEA results to make sure
that the deflection limits were followed and that the stress levels stayed within the WPC
material’s acceptable range.

3.5. WPC Panels’ Optimization Framework

The optimization framework for the wood–plastic composite (WPC) roof panels inte-
grates finite element analysis (FEA) and optimization algorithms into a cohesive workflow
to identify the optimal cross-sectional shape and thickness. The process begins with the
initialization of design variables, such as amplitude, period, and thickness, which define
the geometric parameters of the panel. These variables are used to generate candidate
shapes, including sinusoidal, triangular, and trapezoidal profiles, which are then evaluated
using FEA to compute their structural performance under applied loads. The FEA results,
including maximum deflection and stress, are used to assess compliance with the deflection
and stress constraints, as well as manufacturing limits such as minimum wall thickness and
the extrusion die’s dimensions. The fitness of each candidate solution is calculated on the
basis of the cross-sectional area and the degree of constraint violation, with penalty terms
applied to infeasible designs. The optimization algorithms, either the genetic algorithm
(GA) or particle swarm optimization (PSO), iteratively update the population of candidate
solutions, refining the designs over successive generations until the convergence criteria
are met. Algorithm 1 below provides a high-level overview of this process, illustrating the
sequence of steps and the interactions among shape generation, FEA, and optimization.

Algorithm 1. WPC Roof Panel Optimization

Input:
Panel dimensions
Applied loads
Material properties
Constraints

Output:
Optimal shape parameters

1 Initialization: Generate the initial set of random shape parameters S
2 while (Maximum generations not met)
3 for each parameter set x in S do
4 Generate panel using shape parameters x
5 Apply loads and boundary conditions
6 Perform finite element analysis
7 Evaluate objective function and apply penalties for constraint violation
8 end for
9 Generate new solutions set and update S
10 end while
11 return Optimal set of shape parameters

4. Results
4.1. Experimental Results

The three-point bending tests demonstrated uniform mechanical performance among
all the evaluated specimens. The average modulus of rupture (MOR) was calculated to
be 42.7 MPa, with a standard deviation of 1.5 MPa, signifying low variability among
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the samples. The modulus of elasticity (MOE) was recorded at an average of 2.46 GPa,
with a standard deviation of 80 MPa, indicating consistent elastic behavior under flexural
loading. Additionally, the density of the extruded wood–plastic composite (WPC) panels
was roughly 540 kg/m3, indicating a consistent material composition. The load–deflection
curves illustrated in Figure 4 clearly depict the characteristic bending behavior of the WPC
panels, exhibiting a linear elastic region that gradually transitions to failure. The results
highlight the reproducibility and mechanical integrity of the extruded WPC panels under
flexural stress conditions.
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Figure 4. Load–deflection curves for WPC specimens from the three-point bending tests.

4.2. Computational Design and Optimization Results

The optimization process yielded optimal cross-sectional shapes for both trapezoidal
and sinusoidal panels, each defined by a unique set of geometric parameters. The flexural
properties obtained from the three-point bending tests were incorporated into the finite
element models (FEM) to accurately represent the material’s behavior. To enhance compu-
tational efficiency and reduce running time, the panel width was initially fixed at 400 mm
during the optimization phase. Furthermore, full-scale FEM simulations were conducted
on the optimal designs using final panel widths of 1200 mm and 3000 mm to verify the
performance and structural integrity of the selected profiles. The optimal parameters for
each shape, including amplitude, period, and thickness, are summarized in Table 2, which
also provides the corresponding cross-sectional area and moment of inertia.

Table 2. Optimal geometric parameters and corresponding structural properties.

Shape
Parameters Cross-Sectional Properties

Amplitude Period φ Area (mm2) Ixx (mm4)

Sinusoidal 230 174.5 - 22,054 108,328,378

Trapezoidal 197.5 198.5 197.5 17,444 67,553,565

Both designs met the maximum midspan deflection of 8.33 mm, with the trapezoidal
panel exhibiting a maximum deflection of 8.2 and the sinusoidal panel showing a maximum
deflection of 7.2 mm. The trapezoidal panel’s angular profile, characterized by flat sections
and sharp transitions, provided lower cross-sectional area while abiding with the maximum
deflection constraint. In contrast, the sinusoidal panel’s smooth, continuous curvature
allowed for a more uniform stress distribution, as discussed in the following section. The
cross-sectional shapes of the optimal designs are illustrated in Figure 5, with Figure 5a
showing the sinusoidal panel and Figure 5b depicting the trapezoidal panel.
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5. Discussion
5.1. Comparative Structural Analysis of Sinusoidal and Trapezoidal Panels

Finite element analysis (FEA) was conducted to evaluate the stress distribution in the
optimized cross-sectional profiles. For both the major and minor principal stresses, the
trapezoidal panels exhibit pronounced stress concentrations at the peaks and troughs, with
higher peak values observed in the flat regions at the peaks. In contrast, the sinusoidal panel
demonstrates smoother stress transitions along its continuous curvature, leading to a more
uniform distribution. At midspan, the sinusoidal panel recorded a major principal stress of
2.46 MPa and a minor principal stress of 2.64 MPa, whereas the trapezoidal panel showed
higher stress levels, with a major principal stress of 2.73 MPa and a minor principal stress
of 2.82 MPa. Figures 6 and 7 present the distributions of the major and minor principal
stresses, respectively, for both the sinusoidal and trapezoidal panels.
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5.2. Algorithmic Convergence and Solution Quality Assessment

A comparative analysis was conducted to evaluate the performance of the genetic
algorithm (GA) and particle swarm optimization (PSO) in optimizing the cross-sectional
parameters of the WPC panels. For the sinusoidal panel, the GA converged to a solution
characterized by a lower panel thickness and a geometry where the amplitude was less
than the period. In contrast, PSO identified a solution with a higher panel thickness; while
both the amplitude and period were lower than those in the GA solution, the amplitude
exceeded the period. For the trapezoidal panel, both algorithms favored designs with
lower amplitude values relative to the period; however, the GA solution exhibited a higher
thickness, lower amplitudes and periods, and a higher corrugation angle than the PSO
solution. While the difference in the objective function values was modest for the sinusoidal
panel, it was more pronounced in the trapezoidal configuration—underscoring the superior
exploration capability of PSO in navigating the solution space and avoiding local optima.
Figure 8 illustrates the evolution of decision variables and the corresponding objective
function values over 30 generations for both panel types, with subfigure (a) representing
the sinusoidal panel and subfigure (b) representing the trapezoidal panel. Each connected
line in the figure represents the values of the decision variables for the best individual in
the population at each generation, along with its corresponding deflection and objective
function values. The optimal solution found across all 30 generations is highlighted in bold,
representing the best-performing configuration achieved during the optimization process.

Figure 9a–d illustrate the convergence behavior of both GA and PSO for the sinusoidal
and trapezoidal panels. The PSO algorithm exhibited superior convergence efficiency,
achieving optimization within six generations for both panel geometries. This rapid
convergence can be attributed to PSO’s velocity-based position updating mechanism and
social learning components, which facilitate effective exploration of the continuous design
space. The algorithm’s inherent ability to maintain population diversity, coupled with its
memory retention of global and personal best positions, enables efficient navigation of the
solution landscape. In contrast, the GA demonstrated notably slower convergence rates,
requiring 12 and 28 generations for the sinusoidal and trapezoidal panels, respectively.
Several factors can explain this difference in performance. First, GA’s discrete nature of
genetic operators (crossover and mutation) may not be as effective in navigating continuous
design spaces compared with PSO’s continuous position updates. Second, the tournament
selection process in GA can lead to premature convergence due to reduced population
diversity, particularly in complex solution spaces.
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The difference in convergence rates between the sinusoidal and trapezoidal panels’
optimizations (12 versus 28 generations for GA) can be also attributed to the inherent char-
acteristics of their respective solution spaces. The sinusoidal panel’s solution space exhibits
higher smoothness and continuity due to its gradual geometric variations, resulting in a
more well-behaved optimization landscape. Conversely, the trapezoidal panel’s solution
space is characterized by sharper transitions and inherent discontinuities, particularly due
to the interplay between the φ and amplitude parameters. These parameters can transform
the profile between trapezoidal and triangular configurations, each with distinct structural
behaviors. This parametric flexibility introduces multiple regime changes in the structural
response, resulting in a more complex solution space with numerous local optima and
distinct behavioral zones. The abrupt changes in structural characteristics during these
geometric transitions pose additional challenges for optimization algorithms, particularly
affecting the GA’s ability to efficiently navigate across these regime boundaries.

Figure 9c further highlights the differing convergence behaviors of PSO and GA in the
case of the trapezoidal panel, demonstrating how GA exhibits a slower and more erratic
convergence pattern due to its difficulty in escaping local optima. Additionally, Figure 8b
shows that the optimal solution obtained by GA had a higher thickness value compared
with that of PSO, indicating that GA converged to a local optimum and was unable to
further explore the solution space effectively. This limitation arises from GA’s relatively
lower exploration capabilities compared with PSO, which allows PSO to achieve a more
globally optimal solution by better navigating the complex and discontinuous search space.

6. Conclusions
This study introduced an evolutionary algorithm-based method for optimizing the

cross-sectional profiles of wood–plastic composite (WPC) roof panels designed for afford-
able housing. The amalgamation of experimental flexural property assessments, finite
element analysis, and evolutionary optimization methodologies, such as the genetic algo-
rithm (GA) and particle swarm optimization (PSO), facilitated the design of effective and
manufacturable panel profiles. We outline the principal findings and recommendations be-
low.

• Three-point bending tests showed that the WPC material, which is made up of 60%
HDPE and 40% sawdust, had consistent mechanical properties. Its average modulus
of rupture was 42.7 MPa and its average modulus of elasticity was 2.46 GPa.

• A range of cross-sectional geometries, such as sinusoidal, trapezoidal, and triangular
profiles, was assessed. The trapezoidal shape was seen as the best balance between
material efficiency and structural rigidity, so it was chosen as the best option for
further development.

• Particle swarm optimization (PSO) exhibited enhanced efficacy relative to the genetic
algorithm (GA) by achieving faster convergence and meeting the deflection constraints
in fewer iterations. This efficiency diminishes computational time while preserving
the accuracy of the optimization process.

• Finite element analysis demonstrated unique stress distribution characteristics across
the profiles. The sinusoidal profile demonstrated more gradual stress transitions, po-
tentially decreasing the risk of failures associated with stress concentration. Conversely,
the trapezoidal profile exhibited elevated peak stresses concentrated in flat areas. Still,
these stress levels stayed within the WPC material’s acceptable range, which meant
that the structure would remain strong under the expected loading conditions.

• These findings underscore the effectiveness of integrating experimental characteriza-
tion, computational modeling, and sophisticated optimization algorithms to improve
the performance and manufacturability of WPC roof panels. To make the best use of
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WPC materials in long-lasting, low-cost housing solutions, future research may focus
on improving the way the materials are made and looking into how long they last in
different environments.
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